User’s Guide : Advanced Multivariate Analysis : Factor Analysis : References
  
References
Akaike, H. (1987). “Factor Analysis and AIC,” Psychometrika, 52(3), 317–332.
Anderson, T. W. and H. Rubin (1956). “Statistical Inference in Factor Analysis,” in Neyman, J., editor, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume V, 111-150. Berkeley and Los Angeles: University of California Press.
Bernaards, C. A., and R. I. Jennrich (2005). “Gradient Projection Algorithms and Software for Arbitrary Rotation Criteria in Factor Analysis”, Educational and Psychological Measurement, 65(5), 676-696.
Browne, M. W. (2001). “An Overview of Analytic Rotation in Exploratory Factor Analysis,” Multivariate Behavioral Research, 36(1), 111–150.
Browne, M. W. and R. Cudeck (1993). “Alternative ways of Assessing Model Fit,” in K. A. Bollen and J. S. Long (eds.), Testing Structural Equation Models, Newbury Park, CA: Sage.
Cudeck, R. and M. W. Browne (1983). “Cross-validation of Covariance Structures,” Multivariate Behavioral Research, 18, 147–167.
Dziuban, C. D. and E. C. Shirkey (1974). “When is a Correlation Matrix Appropriate for Factor Analysis,” Psychological Bulletin, 81(6), 358–361.
Fabrigar, L. R., D. T. Wegener, R. C. MacCallum, and E. J. Strahan (1999). “Evaluating the Use of Exploratory Factor Analysis in Psychological Research,” Psychological Methods, 4(3), 272–299.
Glorfeld, L. W. (1995). “An Improvement on Horn’s Parallel Analysis Methodology for Selecting the Correct Number of Factors to Retain,” Educational and Psychological Measurement, 55(3), 377–393.
Gorsuch, R. L. (1983). Factor Analysis, Hillsdale, New Jersey: Lawrence Erlbaum Associates, Inc.
Green, B. F., Jr. (1969). “Best Linear Composites with a Specified Structure,” Psychometrika, 34(3), 301–318.
Green, B. F., Jr. (1976). “On the Factor Score Controversy,” Psychometrika, 41(2), 263–266.
Grice, J. W. (2001). “Computing and Evaluating Factor Scores,” Psychological Methods, 6(4), 430–450.
Harman, H. H. (1976). Modern Factor Analysis, Third Edition Revised, Chicago: University of Chicago Press.
Harris, C. W. and H. F. Kaiser (1964). “Oblique Factor Analytic Solutions by Orthogonal Transformations,” Psychometrika, 29(4), 347–362.
Hendrickson, A. and P. White (1964). “Promax: A Quick Method for Rotation to Oblique Simple Structure,” The British Journal of Statistical Psychology, 17(1), 65–70.
Horn, J. L. (1965). “A Rationale and Test for the Number of Factors in Factor Analysis,” Psychometrika, 30(2), 179–185.
Hu, L.-T. and P. M. Bentler (1995). “Evaluating Model Fit,” in R. H. Hoyle (Ed.), Structural Equation Modeling: Concepts, Issues, and Applications, Thousand Oaks, CA: Sage.
Hu, L.-T. and P. M. Bentler (1999). “Cut-off Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives,” Structural Equation Modeling, 6(1), 1–55.
Humphreys, L. G. and D. R. Ilgen (1969). “Note on a Criterion for the Number of Common Factors,” Educational and Psychological Measurement, 29, 571–578.
Humphreys, L. G. and R. G. Montanelli, Jr. (1975). “An Investigation of the Parallel Analysis Criterion for Determining the Number of Common Factors,” Multivariate Behavioral Research, 10, 193–206.
Ihara, M. and Y. Kano (1995). “A New Estimator of the Uniqueness in Factor Analysis,” Psychometrika, 51(4), 563-566.
Jackson, D. A. (1993). “Stopping Rules in Principal Components Analysis: A Comparison of Heuristical and Statistical Approaches,” Ecology, 74(8), 2204–2214.
Jennrich, R. I. (2001). “A Simple General Procedure for Orthogonal Rotation,” Psychometrika, 66(2), 289–306.
Jennrich, R. I. (2002). “A Simple General Method for Oblique Rotation,” Psychometrika, 67(1), 7–20.
Johnson, R. A., and D. W. Wichern (1992). Applied Multivariate Statistical Analysis, Third Edition, Upper Saddle River, New Jersey: Prentice-Hall, Inc.
Jöreskog, K. G. (1977). “Factor Analysis by Least-Squares and Maximum Likelihood Methods,” in Statistical Methods for Digital Computers, K. Enslein, A. Ralston, and H. S. Wilf, (eds.), New York: John Wiley & Sons, Inc.
Kaiser, H. F. (1970). “A Second Generation Little Jiffy,” Psychometrika, 35(4), 401–415.
Kaiser, H. F. and J. Rice (1974). “Little Jiffy, Mark IV,” Educational and Psychological Measurement, 34, 111–117.
Kano, Y. (1990). “Noniterative estimation and the choice of the number of factors in exploratory factor analysis,” Psychometrika, 55(2), 277–291.
Marsh, H. W., J. R. Balla and R. P. McDonald (1988). “Goodness of Fit Indexes in Confirmatory Factor Analysis: The Effect of Sample Size,” Psychological Bulletin, 103(3), 391–410.
McDonald, R. P. (1981). “Constrained Least Squares Estimators of Oblique Common Factors,” Psychometrika, 46(2), 277–291.
McDonald, R. P. and H. W. Marsh (1990). “Choosing a Multivariate Model: Noncentrality and Goodness of Fit,” Psychological Bulletin, 107(2), 247–255.
Preacher, K. J. and R. C. MacCallum (2003). “Repairing Tom Swift's Electric Factor Analysis Machine,” Understanding Statistics, 2(1), 13–32.
Ten Berge, J. M. F., W. P. Krijnen, T. Wansbeek, and A. Shapiro (1999). “Some New Results on Correlation Preserving Factor Scores Prediction Methods,” Linear Algebra and Its Applications, 289, 311–318.
Tucker, L. R, and R. C. MacCallum (1997). Exploratory Factor Analysis, Unpublished manuscript.
Velicer, W. F. (1976). “Determining the Number of Components from the Matrix of Partial Correlations,” Psychometrika, 41(3), 321–327.
Zoski, K. W. and S. Jurs (1996). “An Objective Counterpart to the Visual Scree Test for Factor Analysis: The Standard Error Scree,” Educational and Psychological Measurement, 56(3), 443–451.
Zwick, W. R. and W. F. Velicer (1986). “Factors Influencing Five Rules for Determining the Number of Components to Retain,” Psychological Bulletin, 99(3), 432–442.