ls |
m=integer | Set maximum number of iterations. |
c=scalar | Set convergence criterion. The criterion is based upon the maximum of the percentage changes in the scaled coefficients. The criterion will be set to the nearest value between 1e-24 and 0.2. |
s | Use the current coefficient values in “C” as starting values for equations with AR or MA terms (see also
param). |
s=number | Determine starting values for equations specified by list with AR or MA terms. Specify a number between zero and one representing the fraction of preliminary least squares estimates computed without AR or MA terms to be used. Note that out of range values are set to “s=1”. Specifying “s=0” initializes coefficients to zero. By default EViews uses “s=1”. |
numericderiv / ‑numericderiv | [Do / do not] use numeric derivatives only. If omitted, EViews will follow the global default. |
fastderiv / ‑fastderiv | [Do / do not] use fast derivative computation. If omitted, EViews will follow the global default. |
showopts / ‑showopts | [Do / do not] display the starting coefficient values and estimation options in the estimation output. |
cx=arg | Cross-section effects: (default) none, fixed effects (“cx=f”), random effects (“cx=r”). |
per=arg | Period effects: (default) none, fixed effects (“per=f”), random effects (“per=r”). |
wgt=arg | GLS weighting: (default) none, cross-section system weights (“wgt=cxsur”), period system weights (“wgt=persur”), cross-section diagonal weighs (“wgt=cxdiag”), period diagonal weights (“wgt=perdiag”). |
cov=arg | Coefficient covariance method: (default) ordinary, White cross-section system (period clustering) robust (“cov=cxwhite” or “cov=percluster”), White period system (cross-section clustering) robust (“cov=perwhite” or “cov=cxcluster”), White heteroskedasticity robust (“cov=stackedwhite”), White two-way cluster robust (cov=bothcluster”), Cross-section system robust/PCSE (“cov=cxsur”), Period system robust/PCSE (“cov=persur”), Cross-section heteroskedasticity robust/PCSE (“cov=cxdiag”), Period heteroskedasticity robust/PCSE (“cov=perdiag”). |
keepwgts | Keep full set of GLS weights used in estimation with object, if applicable (by default, only small memory weights are saved). |
rancalc=arg (default=“sa”) | Random component method: Swamy-Arora (“rancalc=sa”), Wansbeek-Kapteyn (“rancalc=wk”), Wallace-Hussain (“rancalc=wh”). |
nodf | Do not perform degree of freedom corrections in computing coefficient covariance matrix. The default is to use degree of freedom corrections. |
b | Estimate using a balanced sample (pool estimation only). |
coef=arg | Specify the name of the coefficient vector (if specified by list); the default behavior is to use the “C” coefficient vector. |
iter=arg (default= “onec”) | Iteration control for GLS specifications: perform one weight iteration, then iterate coefficients to convergence (“iter=onec”), iterate weights and coefficients simultaneously to convergence (“iter=sim”), iterate weights and coefficients sequentially to convergence (“iter=seq”), perform one weight iteration, then one coefficient step (“iter=oneb”). Note that random effects models currently do not permit weight iteration to convergence. |
unbalsur | Compute SUR factorization for unbalanced data using the subset of available observations in a cluster. |
prompt | Force the dialog to appear from within a program. |
p | Print basic estimation results. |