bvar |
noconst | Do not include a constant in exogenous regressors list. |
prior = keyword (default= “lit”) | Set the prior type: “lit” (Litterman/Minnesota), “nw” (Normal-Wishart), “sznw” (Sims-Zha Normal-Wishart prior), “sznf” (Sims-Zha Normal-flat prior), “glp” (Giannone, Lenze, and Primiceri). |
initcov = keyword (default = “uni”) | Set the (initial) residual variance-covariance: “full” (full Classical VAR), “uni” (univariate AR), “diag” (diagonal of full classical VAR), “arconst” (univariate AR and a constant) By default, EViews uses the “initcov=uni” option so that diagonal elements of the prior residual variance-covariance can be obtained from the estimation of a set of univariate AR models. |
nodf | Do not degree-of-freedom correct the initial residual covariance. |
initexog | Use exogenous variables in initial covariance estimate. |
initdummied | Use dummy variables in initial covariance estimate. (Only applicable if dummy variable options are below). |
icsmpl = arg | Set the sample used for initial covariance estimate (estimation sample used if omitted). |
sumcoef | Use the sum-of-coefficients dummy variable (only applicable if not using Sims-Zha or GLP prior). |
initobs | Use the initial-observations dummy variable (only applicable if not using Sims-Zha or GLP prior). |
nsumcoef | Do not use sum-of-coefficients dummy variable (only applicable if using Sims-Zha or GLP prior). |
ninitobs | Do not use initial-observations dummy variable (only applicable if using Sims-Zha or GLP prior). |
l0 = num | Set the residual covariance tightness hyper-parameter. |
l1 = num | Set the overall tightness hyper-parameter. |
l2 = num | Set the relative cross-variable weight hyper-parameter. |
l3 = num | Set the lag decay hyper-parameter. |
l4 = num | Set the exogenous variables hyper-parameter. |
l5 = num | Set the other exogenous variables hyper-parameter. |
mu1 = num | Set the AR(1) coefficient dummies hyper-parameter. |
mu5 = num | Set the sum of coefficient dummies hyper-parameter. |
mu6 = num | Set the initial observation dummies hyper-parameter. |
c1 = num | Set the S scale hyper-parameter. |
c2 = num | Set the V scale hyper-parameter. |
c3 = num | Set the degrees-of-freedom hyper-parameter. |
optl1 | Optimize the L1 hyper-parameter. |
optl3 | Optimize the L3 hyper-parameter. |
optmu5 | Optimize the MU5 hyper-parameter. |
optmu6 | Optimize the MU6 hyper-parameter. |
optpsi | Optimize the initial covariance estimates. |
draws = num | Set the number of MCMC draws (only applicable with “prior=inw”). |
seed = num | Set the seed for the MCMC generator (only applicable with “prior=inw”). |
burn = num | Set the percentage of MCMC draws to use as a burn-in (only applicable with “prior=inw”). |
m=integer | Set maximum number of iterations (only applicable with “prior=glp”). |
c=scalar | Set convergence criterion (only applicable with “prior=glp”). |
prompt | Force the dialog to appear from within a program. |
p | Print basic estimation results. |